Empirical Likelihood based Inference for Additive Partial Linear Measurement Error Models.

نویسندگان

  • Hua Liang
  • Haiyan Su
  • Sally W Thurston
  • John D Meeker
  • Russ Hauser
چکیده

This paper considers statistical inference for additive partial linear models when the linear covariate is measured with error. To improve the accuracy of the normal approximation based confidence intervals, we develop an empirical likelihood based statistic, which is shown to be asymptotically chi-square distributed. We emphasize the finite-sample performance of the proposed method by conducting simulation experiments. The method is used to analyze the relationship between semen quality and phthalate exposure from an environment study.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions

The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...

متن کامل

Ridge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models

In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...

متن کامل

Variable Selection and Empirical Likelihood based Inference for Measurement Error Data

Using nonconvex penalized least squares, we propose a class of variable selection procedures for linear models and partially linear models when the covariates are measured with additive error. The rate of convergence and the asymptotic normality of the resulting estimate are established. We further demonstrate that, with proper choice of penalty functions and the regularization parameter, the r...

متن کامل

Influence Measures in Ridge Linear Measurement Error Models

Usually the existence of influential observations is complicated by the presence of collinearity in linear measurement error models. However no method of influence measure available for the possible effect's that collinearity can have on the influence of an observation in such models. In this paper, a new type of ridge estimator based corrected likelihood function (REC) for linear measurement e...

متن کامل

Correcting for covariate measurement error in logistic regression using nonparametric maximum likelihood estimation

When covariates are measured with error, inference based on conventional generalized linear models can yield biased estimatesof regressionparameters. This problem can potentiallybe rectiŽed byusing generalizedlinear latent and mixedmodels (GLLAMM), including a measurementmodel for the relationship between observed and true covariates. However, the models are typically estimated under the assump...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Statistics and its interface

دوره 36 3  شماره 

صفحات  -

تاریخ انتشار 2009